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Overview

Motivation

Our endeavor
Results and next development steps

Background and previous results
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Damage introduces non-linearities in 
a structural system

Crack initiation and propagation

Bolt pretension loss

Loose part “rattle”

www-cemef.cma.fr
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Current detection methods characterize 
changes in linear models of the structure

Modal shapes and parameters

www.lanl.gov

Autoregressive correlation coefficients
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However, these methods are not 
foolproof

Modal analysis methods only detect global changes
Autoregressive models do not take advantage of non-linearities

Monitoring of structural health should involve pinpointing 
damage:

In time
In space
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A damage detection method using a feature 
known as the Holder Exponent is explored

How?
Measures time signal

regularity

Extracts instantaneous high 
frequency content
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Calculation of the Holder Exponent relies 
on time-frequency analysis methods

Fast Fourier Transform (FFT) shortcomings
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This leaves two main choices:
∇ Short Time Fourier Transform (STFT)
∇ Continuous Wavelet Transform (CWT)
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The important difference between the STFT and 
the CWT lies in resolution

Scalogram
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The excellent time resolution at high frequencies is key
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The Holder Exponent can be computed 
directly from the CWT
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Analyze the transform column by column

Massage the slope to find the 
Holder Exponent

Compute the logarithmic decay 
(slope, m) of the spectrum
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Robertson and Farrar first explored the 
capability of the Holder Exponent

Doctored earthquake data Loose part rattle
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The effectiveness of the Holder Exponent 
is explored by testing physical models

Applicability to “real world” 
structures
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Sensitivity to instrument 
locations

Automating the detection process 
with a Statistical Process Control 
(SPC)
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The tested structures modeled different 
forms of damage

Cantilever beam

Three-story structure 5 DOF system
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Results from the cantilever beam showed the 
Holder Exponent was sensitive to damage
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However, obvious events do not really need detection 
methods
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The Holder Exponent detected damage in the 5 DOF, 
but some features were obvious in the time signal
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The three-story structure produced varying results 
based on the input 

The Holder Exponent is largely ineffective 
for broadband random inputs
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A return to the fundamentals illuminated why 
random inputs were not giving favorable results

Frequency content of impulse is broadband

Input with limited frequency content should 
accentuate damage events0 20 40 60 80 100
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Armed with this insight, the three-story 
structure was revisited

Shaped random input

Promising results for 
real world 
applications
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Subsequently, the sensitivity to proximity was 
explored
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Subsequently, the sensitivity to proximity was 
explored

Three-story structure
∇ Decent intra-floor 

sensitivity
∇ Low inter-floor sensitivity
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A SPC was developed to assess the 
feasibility of automating the detection scheme
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Significant discoveries were made with regards 
to the usefulness of the Holder Exponent

Frequency content of the input is important
Information from damage events is attenuated
Automating the detection process seems to hold promise

The applicability of the Holder Exponent could be 
further characterized

Sensitivity to damage level
Quantify proximity sensitivity for more systems
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Significant discoveries were made with regards 
to the usefulness of the Holder Exponent

Frequency content of the input is important
Information from damage events is attenuated
Automating the detection process seems to hold promise

The applicability of the Holder Exponent could be further 
characterized

Sensitivity to damage level
Proximity sensitivity for more systems

QUESTIONS?
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